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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2556

BUCKLING OF RECTANGULAR SANDWICH PLATES SUBJECTED TO
EDGEWISE COMPRESSION WITH LOADED EDGES SIMPLY
SUPPORTED AND UNLOAIED EDGES CLAMPED

By Kuo Tai Yen, V. L. Salerno, and N. J., Hoff
SUMMARY

The compressive stress for buckling is calculated for a rectangular
flat sandwich plate with loaded edges simply supported and unloaded edges
rigidly clamped. In the calculations Hoff's differential equations are
integrated by Leggett's method in order to obtain lower bounds and by
Gelerkin's method to establish upper bounds. The true values of the
buckling stress are estimated as the arithmetic means of these bounds
and are presented in a diagram which covers the entire practical range
of the geometric and mechanical quantities involved. The theoretical
results are in satisfactory agreement with results of tests carried out
at the Forest Products Laboratory.

INTRODUCTION

The expression "sandwich plate" designates a composite plate con-
sisting of two thin faces and a thick core. In airplane construction
the faces are usually of aluminum alloy and the core is of some light-
weight material such as an expanded plastic or balsa wood. In the
Jatter case the fibers of the wood are, in general, arranged perpen-
dicularly to the plane of the plate. Since the modulus of elasticity
of such a core in the plane of the plate is about one-thousandth of
that of the faces, the normsl stresses in the core are of little impor-
tance in resisting bending moments even though the usual ratio of face
thickness to core thickness is between one-tenth and one-hundredth. On
the other hand, the core performs a task in transmitting shear forces
and undergoes considerable shearing deformations because its modulus
of shear is low., Hence shearing deformations must not be disregarded
in the analysis of sandwich plates.

In an earlier paper (reference 1) differential equations were
derived for rectangular sandwich plates subjected to transverse and
edgewise loading and in the derivation the finite bending rigidity of
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the individual faces was duly considered, The differential equations
were integrated for compressive loading perpendicular to one pair of
edges when all four edges of the plate were simply supported, and the
buckling stresses obtained were presented in diagrams. In the present
report this work is continued and buckling stresses are calculated for
compressive loads acting perpendicular to one pair of edges when the
loaded edges are simply supported and the unloaded edges rigidly clamped.
In order to obtain a close approximation to the true values of the
buckling stress and to establish rigorously the accuracy of the solu-
tion, both lower and upper bounds were determined for the buckling
stress. The former were obtained by lLeggett's approach and the latter
by Galerkin's method.

Although the calculations are somewhat complex, the finmal results
are presented in a diagram (fig. 7) which can be used easily by the air-
plane designer, The few simple formulas needed in conjunction with the
diagram are collected and their use is shown under the heading
"Numerical Examples.” '

The calculations presented here were carried out at the Polytechnic

Institute of Brooklyn under the sporsorship and with the financial aid
of the National Advisory Committee for Aeronautics.

SYMBOLS

85,0554, parameters depending on geometry and elastic properties
of sandwich plate and on n

c core thickness, inches

cg = (c + ’c)/L._x ’

C critical stress factor

D bending rigidity of thin plate, pound-inches squared
per inch

Do bending rigidity of sandwich plate, pound-inches squared
rer inch

E Young's modulus

F form factor of sandwich plate

G shear modulus of face, psi
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U, v,w

X3Y,2

cr,o

shear modulus of core, psi

reciprocal of aspect ratio of sandwich plate (Lley)

eigenvalues for vibration of a beam

edge lengths of sandwich plate, inches

number of half waves in direction of loading

parameters depending on elastic properties of sandwich
plate

sandwich stiffness parameter

face thickness, inches

components of displacements in direction of x-, y-,
and z-axes, respectively

rectangular coordinates

compressive edge load in direction of y-axis, pounds
per inch

nondimensional form of compressive edge load in direc-
tion of y-axis

Kronecker delts

Laplacian operator

nondimensional coordinate axes (5 =

o)

Poisson's ratio

buckling stress of two independent faces, psi
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Oup buckling stress of sandwich plate, psi

Xl,kg parameters depending on elastic properties of sandwich
plate

A = UFc

SOLUTION BY IEGGETT'S METHOD

Figure 1 shows the sandwich plate and its loading. The equilibrium
conditions of the plate were derived in reference 1 from the essential
parts of the strain energy and the potential of the external loads with
the aid of the principle of virtual displacements. They can be given
in the following form:

- __EE_E{%uXX (1 - gy + (14 u)vx;] + 26" (__22_ + WX) =0 (1)

1-p c+ t\c + 1t

26,2
Et c v
- l———-‘:-é'EVy_y + (l - |J.)VXX + (l + p)ux;‘l + -C—-:-_t<c Tt + Wy) =0 (2)

Et3 Aaw ) 2GCC

6(1 _ u2) c+ t

il
(@]
—~
w
-

(uX + Vy) + way - Gcc Aw

where u, v, and w are displacements in the x-, y-, and z-directions,
respectively, of points in the middle plane of the upper face plate of
the sandwich, while those in the lower face are -u, -v, and w, as
shown in figures 2 and 3. The subscripts x and y denote differ-
entiation with respect to the coordinates x and y. Since a right-
hand coordinate system is used in this report, the signs of the last
term in the first two equations and the second term of the third equa-
tion are opposite to those given in reference 1.

For a sandwich plate simply supported at the two loaded edges y = O
and y = Ly and clamped at the edges x = 0 and x = Ly the boundary

conditions are:
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u=0 at all four edges (ka)
v =0 at x = 0,Ly (kb)
Vy + Huy =0 at y = 0,Ly (4e)
Wy = 0 . at x = 0,Ly (4a)
Wyy = 0 at y = 0,Ly (ke)
w=0 at all four edges (4f)
Jf the new variables
g:z_ T]:L k:E.x_
Ly iy Ly
are introduced and the notation
GacC GnC
Rl=-£- 2 R2=L 2 CO=C+-t Y:—Y_.L2
Do 2D Ly °© 2p X
is used where
Et(c + t)2 Et3
Dy = —m———— D= 2
2(1 - u2) 12(1 - 42)

equations (1), (2), and (3) can be written in the following nondimen-
sional form:

e

.

.2
2k~v
B mm

2ug, + (1 - p)k2unn + (1 + kv

gé] + 2Rlu + Rlcowg =

+ (1 - p)vgg + (1 + p)ku§£] + 2Rlv + Rlcowﬁ

[
(@)

i
o
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2 k 2Ro
wgggg. + 2k W§§nn + k wmmn - E—(—)—(ug + kvﬂ) +
Yok%zm] - Re(wgg + k2me) =0 (7)

The solution may be assumed to have the form:

[o1]

u = Z Fn(g) sin nm (8a)
n=1 ’

v = G,(&) cos nm (8b)
n=

w =i H,(&) sin nm (8¢c)
n=1

These functions satisfy all the boundary conditions if

Fo(8) =0 at & =0,1 - (9)
G (&) =0 at & =0,1 (10)
Bn(8) = Hy'(8) =0 at £ =0,1 (11)

Insertion of u, v, and W into equations (5), (6), and (7) vields:

-2Fy' (&) + El - 1) (kn)2e® 2R-;JF(€) + (1 + w)(kn)nGy' (&) +

Ric Hy' () = 0 (12)
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-(1 + p)(kn)nFy' (8) - (1 - w)Gy"(8) + QEkn)2ﬂ2 + Ry|G(e) +

(kn)xRyc Hp(e) = 0 (13)

(BB feo)Fa' (2) + (2Bpfcq) (um)ny(8) + B (6) - [20am)2 + R)|m,"(6)
(xn)®r [kn R, - ;]Hn(g) =0 (1k)

These three ordinary simultaneous differential equations can be
solved exactly, but the algebraic manipulations become so cumbersome
that an approximate method is preferable., The method used here was sug-
gested by Leggett (reference 2), and was applied by Smith (reference 3)
for the calculation of buckling loads of plywood plates.

The method consists in expressing the derivative of highest order
Hn""(g) by means of a Fourier series, and then integrating the series

term by term:

H,""(¢) = Z Am(mzr)lL sin mmg (15a)
m=1
H,"'(€) = i (-1)A (mn)3 cos mnt + 6A (15b)
m=1
H,"(8) =Z (-l)Am(nm)2 sin mxt + GAE + 2B (15¢)
m=1 ‘
Hn'(g) =i: Ap(mx) cos mmt + 3A§2 + 2Bt + C (154)
m=1

H,(8) =Z A sin mnt + A3 + BE2 + ct + D (15e)
=
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The arbitrary constants A, B, C, and D are determined from the
boundary conditions (equation (11)):

-7t i mAmE + (-l)m] (16a)

A=
m=1

B=n i mAm[Q + (-1)ﬂ (16b)
m=1

C=ox ) why (16¢)

m=1

D=0 (164)

Upon substitution of the expressions for H,'(f) and Hn(E) from equa-
tions (154) and (15e), equations (12) and (13) become:

K3{§g:: Am(mﬂ) cos mnfE + 3Ag2 + Bt + ;]
m=1

Fp"(8) - KiFp(8) - KaGp'(£)

(17)

Fp'(8) + KG "(8) - KSG(8) = K6[Z Ay sinmrt + At + BE cg]
m=1

(18)
where
Kl = E.%.“_).(kn)gﬂE + Rl K2 = - ; H ( n)ﬂ K3 = Rl;:O
K = (1 -p) QEkn)zng * RI_\ Rico

(l+u)(kn)n K5 B (l+u)(kn)n K6_ (1 + |J.)
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The solution of equations (17) and (18) can be obtained by adding
together the complementary and particular integrals, The homogeneous
equations are

F,"(8) - KyF (&) - KoGp' (8)

]
(@]

(17a)

|
(@}

Fp'(8) + KG"(E) - K5Gp(t) = (18a)

and the complementary solution may be assumed in the form

FL(8) = Ble7E G (&) = cle7§

where the values of 7 are to be determined from the vanishing of the
following determinant:

=0
4 Ku72 - K5

Solution of this determinant after substitution of the values of Ky,
Ko, Ky, and K5 yields:

2 2 1
7? = ()" - (19)
7,2 = (kn)zzt2 + R (20)
2 - 1
Hence the complementary solution is
4 - =708
Fn(8) = Bre’" + Boe T ]33672g + Bye 2 (21a)
7.8 -7.8 758 =758
Gp(&) = Cqe Ly Coe L C3e 27 4 Cpe 2 (21v)
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where the coefficients B and C are not independent, but satisfy
the relations

The particular integral of equations (17) and (18) may be assumed
in the form

00

F (¢) = Z £, cos mrg + El§2 + Egt + Eg (22a)
m=1

G (&) = SE: 8y Sin mng + Il§3 + I2§2 + Ig¢ + I (22b)
m=1

where, after setting (Rlco/Q) = p, the coefficients are found to be

fy = -mnpAm/[mer)2 + 7gﬂ
gy = -knnpAmIIEmn)2 + 722]

By = -3pA 7,2
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1
I. = knan2 anPEB
o = -
2 722
13 _ knngc - knprEs - 6knsz
I = knprEs  2knnpB
BT e Tk
2 2
From equations (21) and (22), the general solution of the dif-
ferential equations (17) and (18) is
F,(&) = D; cosh 7{& + D, sinh 718 + D3 cosh 7,& + D), sinh 7,8 +
w -
g £, cos mnf + El§2 + Ept + B (23a)
m=1

71 knn
G.(¢) = ———-@kzcosh 718 + D sinh 7l§) + —_‘(Dh cosh 758 +
n knn 7o ]

o0

Dy sinh 725) + zg:: g, Sin mng + Ilg3 + Igg2 + Igt + I (23b)

m=]1

where Dp, Do, D3, and D) are arbitrary constants which can be

determined from the remaining four boundary conditions (9) and (10):

._l

D 1 h h )Z inh ¥ LI
- = ———|[cos - COS - sin - cm—— ] T] 7
153 km( 71 72)%1 17 (kn)2x2 2“2
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Y . k X
Do = % (Fosh 7y - cosh 72)Z2 - (E%; sinh 7y - ;gﬁ sinh 72>Zl
o0
D3=-D1-E3- E fm
m=1

7172 D 72

Dy = - —=—5Dp-—1I)
(kn)2n2 knn
and
2.2 717
Z = Zl— 2(1 - cosh 77 cosh 72) + (kn) x + 1’2 sinh 14 sinh 12
knx 7172 (kn)2n2

o0

12 sinh 7o
= - (-1)» —— - -
Z, = E i fm[gosh 75 - 1):] + I — E, - E, + E3(cosh 75 1)
m=

00
knn .
Z, = ;;-(%3 + E fm) sinh 7, + Ih(cosh 7, - 1) S L - I, - I

m=1

Thus the functions Fp(8), G,(¢), and H (&) satisfy the differ-

ential equations (12) and (13) and all the boundary conditions formulated
in equations (9), (10), and (11). It remains to satisfy equation (14) by
the assumed functions. To this end Fy'(g), Gp(e), H""(s), H "(¢),

and Hn(E) are expanded in sine series, The series are inserted into
equation (14) and the sums of the coefficients of like terms are equated
to zero. In this manner a system of homogeneous algebraic equations
infinite in number and linear in the constants A;, A, . . . 1is

obtained. The equations yield nontrivial solutions if their determinant
vanishes. This condition permits the calculation of the critical load.
Since the determinant is of infinite order, successive approximastions

to the critical load can be obtained by solving subdeterminants of




NACA TN 2556 13

increasing order. It is shown in appendix A that this process yields
critical values which approach the exact value from below. Hence
leggett's method gives a lower bound for the critical load.

The calculations are carried out with the aid of the following
expansions:

00 S
: . Z (-1)7s
sinh 7:8 = -2 sinh 74 < sin s~k
s=1 74~ + (sn)
00
- § I CRRARY- ] ;
cosh 7;€ = 2n T (P 1 - (-1)° cosh 7i| sin snt
s=1 71

where 1 =1, 2 and

8

1 = .i_ %E - (-1)5_] sin sng

s=1

Next the following notation is introduced:

M o= Rl/n2 = (2/3)(c/t) {1/E~ + (C/t] 2} (Gc /ocr,o)
Ao = R2/"2 = 2(C/t)<Gc/°cr,o) > (2h)
A= Yo/’t2 = Yc:ere/E’TgD = hcrcrlocr,o J
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where _
Oor = Yor[2t (24a)
and

Ocr,o = TEL? 3 - w2)r 2 (2kv)

The requirement that the sums of the coefficients of like terms
vanish yields the following linear equation:

(kn)2 + s°
kn)2 + Mo+ 52

Ash - As(kl)\Q)(

I hso S | 5 (kn)QEkn)2 + ki] + kls2
(s1)3 ()38 - [l ) (-l)]}B Ekn)2 . xﬂ2

{Ekn)e e 2 {02 + SE_] + (kn)?(s? - k)} {As = [-0)%3 -

(sn)3

1

(kn)2 + Ao+ 2 (kn)2 +

where

(-1)°3A - [1 - (-DﬂB

-6n(2A2 + bA)y o+ L.+ 2mApp 4L .)

when s =2m, m=1, 2, 3

_gﬂ[El + 383+ .. .+ (2m- Aoy 5+ . :]

when s =2m -1, m=1,2

_ 1 1 1
H = B (Pl + — Py + P3) (26)
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‘o
1]

1 cosh y; (kn)2x? 7172 sinh 7,
o =72 \%\5tmn h 7, sinh * ¥ 22
sin 71 cosh 7, sin 71 7172 (kn) x cosh 72

i m3AmE_ + (_l)m+S] ] GAE_ + (-1)5‘ [cosh 71 sinh 75 ) 7172 j] .
2 2
=

111.2 + (kn)2 + Xl 72 T

sinh 7, cosh 7, (xn)2x

(e |(-1%3 - [1- (-1)%B | coshyy sinn 77
7172 7on sinh 7, cosh 7, (kn)21r2

P, = -2

s+ - (-DFs Zm%[ -1)° + (-1)7] 6l s O | san g
-

7on w2 + (kn)? + M 72 7 cosh 7,

3 (kn)21? =1 m2 + (kn)2 + M 72211

3+ [i - (-1)f]B cosh 7; » (-1)%3 - |1 - (-1)%]3 1
+
7on sinh 71

72n _ sinh 71

. When 73 and 7, are large, so that sinh 71 R cosh 77 and
sinh 7o x cosh 7o, equation (26) can be simplified to obtain:

P! (kn)?

1l . 71722] Z[ U™ el @fis ()]

me + (kn)2 + M 7221t

222 [(-138 - [1- (-07s
7175

(27)
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where

(kn)2x° 7172
P' =7yl —— -1+ |——== -1
7175 (kn)2x2

It can be seen that equation (25) represents two independent
systems of linear, homogeneous, algebraic equations in Ag. While the
system corresponding to the odd numbers s =2m - 1 with m =1, 2, . . .
represents symmetrical buckling, the system corresponding to the even
numbers s = 2m governs antisymmetrical buckling.

NUMERICAL EVALUATION OF RESULTS OBTAINED

BY IEGGETT'S METHOD

The homogeneous set of linear equations derived in the preceding
section was solved numerically for many different values of the geometric
and mechanical quantities involved. As the minimum value of the buckling -
stress obtains when the buckling is symmetric, only odd values had to be
attributed too s. The first approximation to the true value was cal-
culated by assuming that the deflected shape could be represented by a -
polynomial and a single sine function of the coordinate ¢ (or x) and
by considering n a given constant. The transverse deflections are
then given by

W o= Al(sin né + 1r§2 - 1r§) sin nny (28)

which obviously satisfies the boundary conditions. The set of equations
represented by equation (25) consists of a single equation in this case,
and the compressive stress corresponding to the nontrivial solution of
this equation is the buckling stress.

In the second approximation two terms of the sine series were con-

sidered. Equations (8c), (15e), and (16) yielded the following expres-
sion for the deflected shape:

v = [51 sin nt + A3 sin 3¢ + n(Al + 3A3)(g2 - g}] sin nmm (29)
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This equation again satisfies all the boundary conditions. Equation (25)
yields two simultaneous equations in this case, one for s = 1, and the
second for s = 3, The value of the compressive stress that makes the
determinant of the two equations vanish is the buckling stress. It is
well to remember, however, that equation (25) was obtained after all
functions appearing in the solution were expanded in Fourier series.

The first single term, or the first two terms, of these series do not
satisfy the boundary conditions rigorously, and for this reason the
critical stress calculated from the equations is only approximate., It
is shown in appendix A that the value obtained in this process is always
smaller than the true buckling stress,

It was found convenient to define the following nondimensional
parameters:

.
R = Gc/Fgcr,o
r = c/t y (30)
F=1+3(1+r)°

J

If they are used, equations (24) can be written as

M o= (2/3)rFR/(1 + r)?
(31)
Ao = 2rFR
- The buckling stress of the sandwich plate was given in the form
Ocr = CFOcy o = (X/hF)ccr,o (32)

which equation implicitly defines the critical stress factor C.

In figure 4, by way of example, the values of C are plotted
against the plate aspect ratio Ly’Lx for the fixed values r = 39

and R = 0,3, Different choices of n give different critical stresses
and, as with homogeneous plates, the value of n yielding the smallest
critical stress is the only one of practical importance, The curves
obtained from the first and second approximations do not differ much
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and for this reason it was not considered necessary to calculate a third
approximation. It can also be seen that for large values of Ly/Lx,

say above 2, the aspect ratio has little influence upon the buckling
stress, In this range it is permissible, therefore, to use the minimum
value of C which, incidentally, is independent of n.

The minimum values of the critical stress factor are shown in fig-
ure 5. The abscissa 1s r = c/t and the parameter of the family of
curves is the ratio R = GC/Focr’o. As the values of this parameter

range from O to , and c/t ranges from O to 100, all possible sand~
wich panels are covered in the disgram.

In the limiting case of a homogeneous panel, that is, when the
value of R approaches infinity, the critical stress factor becomes

6.98/k = 1.7L5.

The reduction of results obtained by the Leggett method to a thin
" homogeneous plate is given in appendix B. It was stated earlier that
leggett's method yields lower bounds for the buckling stress., A better
estimate of the true values of the buckling stress can be had if upper
bounds are also established. For this reason a different solution of
the problem is given in the next section in which Galerkin's method is
used in the calculations.

SOLUTION BY GAIERKIN'S METHOD

In applying Galerkin's method to this problem (see appendix C), it
is convenient to introduce the variable { by means of the following
relation:

£ =26 -1

This means that the origin of coordinates is placed at the geometric
center of the sandWich plate. The differential equations (12), (13),
and (14) become

- %Fp"(g) + El—é—ﬁ-)- (kn)2 + )»;_IFn(g) +

(L + p)kn

- Gp' (§) + AecoH,'(8) = 0 (33)
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(rwhn 20 _ 1) G ey s
T
[(k0)2 + MEAGE: k—ni Moy (t) = (34)
h)\Q 2)" " nn
R 233 knnGy," () + ;_ Hy"(8) - B[2(kn)2 + ag]m,"(¢)
(kn)22 |(kn) + 2 - AE(E) = 0 (35)

L]
and the boundary conditions become:

Fo(6) =0 at § =1, -1 (36)
Gu(t) =0 at ¢ =1, -1 (37)
Hy(6) =H'(¢) =0 at ¢ =1, -1 (38)

The solution of the differential equations can be assumed as:

oo

Fo(6) = ) Ay sinmet (39)
m=1,2,...

Galt) = By cos (22Tt (10)
n=1,2,... '

H, () = :g:: Crp®r( €) (31)

m=1,3,...
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Fach individual term of the series satisfies all the required boundary
~conditions provided the functions @m(g) are chosen as the normal modes
of vibration of a beam clamped at both ends (see appendix D). Because
of the orthogonality of the trigonometric and the normal functions @
(see equations (D5), (D6), and (D7) of appendix D) the symmetrical and
antisymmetrical buckling modes can be considered separately. Since the
lowest mode of buckling is symmetrical, H,({) and G,({) were assumed
symmetrical and F,(f{) was assumed antisymmetrical about the origin.

In the actual calculations the entire infinite series given in
equations (39) and (40) will be considered, but only a finite number of
the ¢ functions will be taken into account.

Insertion of F, (), Gu(¢), and H,({) into equations (33), (34),
and (35) leads to

o0

jg—_- [Khmg + al)Am sin mnf - a2<§E7§—E>Bn sin (ggzg—i ﬂQ)} +

m=l,2,...

T

a3 Z Ce@g (8) = e, (8) (33e)

s=1,3,...

zii: -bymA, cos mnf + I£2<§E7§_£>2 + b3|By cos (§§7§_l nC) +

m=1,2,...

by, Capg (L) = ex(t) (3ka)
s=1,3,...

00

{Ecl(mn)Am cos mn{ + coBy cos (ggzg-i néi} +

m=1,2

r
Ez:' (c3ksl‘L + CS)CSQS(C) - c) ;;—- Csms"(g) = 63(C) (35a)

s=1,3 s=1,3,..
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where
aj = ﬁi—%iil (kn)2 + M as = (1 + p)kn ag = Mg
by = (1 + p)kn by = 2(1 - p) b3 = (kn)? + A
by = (kn)mrycy/2

cq = 4k2/co ¢y = 2\knn/cg c3 = l6/n2 cy = h[é(kn)2 - &;
c = (kn)gng[zkn)2 + Ao - i]

If the following integrals are formed (see appendix C),

1

I, = u[; e1(€) sin (tn) af t=1,2, 3, ...
1

I, = J(; eg(g) cos (3375—5 n§> at t=1,2,3, ...
1

I3 =°[1 e3(8)og(¢) 4t a=1,3,5 ...

Galerkin's equations can be obtained by setting the triply infinite
set of integrals equal to zero:
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Consequently

00 r
o 4 ast 2 (-1)"(2m - 1)
@m + 81)At + (-1) — (2m ~ 1)2 2 By| - agtn 2;1 Csagy = O

m=1 5
(42)
(-1)" v (2t - 1) Z” (-1)"n .
x £ (21_;_2___1_)2 P m

2 Ir
[b2<2t - l> . b%Bt + Dy, Z CoBgy = O (43)
5=1

t
o

T
4
Z Ecl(mn)aqum + czﬁqun;J + (c3kq + c5> Cq - ©y Z Co¥sq = (Lk)
s=1

m=1

In these equations m and t take on the values 1, 2, 3, . . ., and
s and q the values 1, 3, 5, . . .. The parameters a, £, and 7
are defined as

1l
Agt =\jr @S(C) cos tnf df

AL
- — Ps (§) sin txnt dg
1

"

trn

(-1)bap,™ (1)
Kt - (et




NACA TN 2556 23

f 9 (€) cos (——-—) xt at

t+1
)

Bst

(-1 (2t - 1)ngg"(1)

1
rr = | o (©ay(t) at

The numerical values of 754 needed for calculation are listed in
appendix D.

Equations (42), (43), and (4U4) form a system of linear homogeneous
algebraic equations, and the vanishing of their determinant yields the
condition for the evaluation of the critical load. It can be shown that
the infinite series given in equations (39) to (41) represent a rig-
orous solution of the problem if the coefficients of the terms are cal-
culated from the infinite set of equations (42) to (4k4) with r — «.
Moreover, a finite number of terms gives just as good an approximate
solutiomn as the Rayleigh-Ritz method employing the same terms. However,
the work involved is large.

For this/feason the determinant was not evaluated but the coeffi-
cients A, and By were expressed in terms of the coefficients Cp

from equations (42) and (43), and then substituted in equation (44),
This procedure leads to an infinite set of homogeneous equations linear
in the Cp. The summations indicated in the equations were carried out

with the aid of complex integration as shown in appendix E.

Equation (42) was solved first for Ap:

)™ g = N, _ L Cypg (1)
Ay = ( my | 2 }{j (-1)"(2n - 1) B, - 2a) }:: -—é}ji————"- (45)
km? + a; |*“ 4=1 (2n - l) 2 . s=1 kg™ - (mx)
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When this value is inserted into equation (43) and the summation signs
are intercha.nged,l the following equation is obtained:

00

(s2/®) ) (-1)"(en-1)B, Y zm? _ _
nzl 2:—1 (424 a,) [(2‘6 - 1) _ m2:' [(Z_ng-_l) ] m2:|

r 00

m n )
2ag ; Csps (1) ; (Ltm2+ al) [(21:2— l>2_ m2] Egsu- (mn)ﬂ

t]. (2t -1\2
(-1) bz( > ) +b3]Bt , o Zr Cos"(1)

=0 (46)
by(2t - 1) b ot~ 1\4
1 1 g k. ( t2 l) ol
With the notation
agc =ap/b  tg=(2t -1)/2  n = (2n-1)/2 kg = ke/n

and utilizing the summation by complex integration developed in appen-
dix E one obtains:

00

e e oo e I B S PR

m=1

na, coth na,
(302 + t02)(802 + noe)

when tg, % N

=-1
8

na, coth wag 72

(302 + to2)2 : l6(ao2 + t02)

-2
8

when tg = ng

1This cen be Justified because of the absolute convergence of these
series,
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and

o

Z : me -1 i e
m=1 (l;me + al) [(Qt _ 1)2 - m2i| E{sl* - (mn)ﬂ b (m2 + a02)(1112 - tog)(mh - ksou)

2

1 ag coth nag

(83) (aoj’L - ksol*) (a02 + toz)

cot “kso(aoetoz - ksou)

kso (to21L - ksoh)

If these equations as well as equation (D9) of appendix D are taken into
account, equation (46) becomes:

o0 2 2 2
as n a, coth may " hlzl AN 230] (to + dg )
228y (L1)Ppp 2S00 )ty
1t on 2 2 t ( )

n=1 (252 + n.2) to(1 + w)kn

T
a3 Z ¢ 0."(1) ankg, coth na, tanh L .

D sYs
7 L
s=1 (ao - ksou)

=0 (1)
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Similarly, if the value of A, as given in equation (45) is
inserted into equation (44), and the series are summed (see equa-
tions (ET), (E8), and (E9) of appendix E) the result is:

axe19, (1) &g coth na, i (-1)"nB, .

2“3, aoh - kou n=1 (302 + noe)
c2cpq"(l) i (_1)nnan 2.+ (1 + p)zanoe(ao2 - n02) ,
ﬂ3 = (no)-l» - ko)-l-) (ao)-t - ko)-l-)
T

2}%‘3‘ @qr.'(l)(xqq + qu) + (c3kqh + 05)Cq - <y Zl Cs7sq =0 (48)

where

coth na, ao2 coth “kqo (aol*L - 5kol+)

8
X = C o '"(l) (o) +
ag = Cq¥q 5 )
(ao - kqo)*) l+kqo5(aol+ - kqo“)
T b1

kquQ(aoh - kqou) singnkqo hkqoh(aoz - kqoz)

when s =4

and
T
, a, coth na
qu = Z qu)s'"(l) N N L ° N +
s=1 (ao - Kgo )(ao - kg0 )
a02 coth 1kgg coth nkqo

(kqou - ksou) kso(aou - ksou) ) kqo(ao11L - kqou)

when s ;4 q.




NACA TN 2556

27
If D, = Bp/3 and the values of ap and a3z as previously
defined are inserted into equation (47), it becomes:
2 2 2 2
(1+ u)kn n 8o coth na, £ AE]" )t +2ao_—_|(to +dy )
—_— (-1) "0,y ————— + (-1) D, S +
S (202 +1n02) to(1+p) (kn)x
r 2 2
1 (1) 4 20Fa0 SOth meo tamh ritgo (802 +t02) | (1-4) .
& s¥s by b . B (v
T s=1 (ao - kso ) (to - kgo ) (1+4)
a 2(a 2_4 2)
o \%o o
T L =0 (49)
(ao - Xs0 )
By means of equations (48) and (49) it is possible to express any Dy
in terms of DP and a linear combination of Cg as follows:
2 2 2 2 2 2 2 2
% (to +bo )(to +do ) D (po +b, )(po +d, )
(-1) Dy = (-1)'D -
ts b P,
2 2 2 2
kn C.0."(1) (to + Do ) (Po + Do )
s¥S N In L Lyl
b s=1 (to - kso) (Po - kso )

where bo2 = ao/[?(l - uﬂ .

It can be seen from the above equations that Dp is of the order
of magnitude of l/p3, and p can be chosen very large so that

(p02 + bOE)/(poh - ksoh) approaches zero, since both b, and ko, are
finite., Hence the above equation may be given as:
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(50)
)

where

' Now substitution of Dy from equation (50) into equation (49), with

t = p, makes it possible to express Dy in terms of linear cambinations
of the Cg; terms. Because of equations (E13) and (E15) of appendix E
and after further simplification the final equation is:

A':L - n
KDy = ji E CsPs (1) 1 X
Lol IV (kn)2 S=1 (d LI 1‘L)
o tanh ndy - o tanh nbg 0 80

do tanh ndy +

kso tanh “kso
" ) (51)
(ao - kyo )

where

41 - WK

(1 + p)(kn)n®

K = (-1)P
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In equation (51), if t = p is chosen a very large number, the last

term approaches the value aog/(aou - ksoh)' After substitution of
the values of ap, ag; and c; into equation (48), multiplication by
(aol* - ko“) / I:exlxch'"(lﬂ , and subtraction of equation (49), with t = p,

from it the following expression is obtained:

k(1 -
- (2 - Wi (-1)pr+ kn X

(1 + u)(kn)ﬁ2 n3kqo tanh nkqo n=1 (no)+ -k h)

[25‘04 - (1 - u)ktoh - (1 +'u)802noé] - EL(qu + qu) +

1
)4_ 00
85" - kgo
- (c3kq + c5)Cq - ¢y Cs¥sq = © (52)
2hq Ao (1) —
where
2 2 2
) oo (a7 + ko )nkqo tanh xiky, - ag . .
qa = “q%q 2K, sin 2nk
bgo* qo q0
when s =g and
r
¢ - Z e 0. (1) a2 . (ko tenh wkgo)
T (ot - ko) | (1o tanh ko)
S0 Qo qo qo

when s # gq.
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Finally through substitution of D from equation (51) into the
second term of equation (52), use of relations (E21) to (E24), and
summing up the series (see equations (E1k4), (E16), and (E20) of
appendix E), the following system of equations is obtained:

r

" 1
Pq E:: CePg (1) —— do tenh nd, +
s=1 (do T Ts0

(1 + 1) (kn)®(8,2 + 4,%)kgo tenh wkgy|  kgo tanh kg,

(aoh - ksou) (’5‘011L - ksoh)
r 2

" 1 - k
.o, (1) 00y * ( ) (kn) .
e quo tanh nkqo
bagh - kg k
T \8& qo ) 4 2 2 2
16k + (kn)“ [(kn)< + - M|xcC

20 APy "™ (1) a° [ b2 ]

u[2(1m)? + xg:]} Z Cs7sq = O (53)

=1, 3, 5, . . . r. In these eguations

M (aoh - kqou) N

o}

) 2 b . 4
[Edo tanh ndy - (kz) tanh nbé] (do kqo )

85°  |do(d0? + 2) b, tenh mb, - d, tanh ndg

kqo tanh nkqolﬂdoh ko) o (052 - 402)
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2 2 2
_ (ao + kqo )nkqo tanh “kqo - a, -
qu = + - when s = g
ukqou 2kgo sin 2mkg,
a2 k__ tanh nk
U] = ° 1 =2 2 when s #
sq = - q
(ksoa - kqoh) kqo tanh nkg,
' . ﬁ( + kqo2 ( ) . (b02 - doe)(ao2 + dog) bi¢ sec2nkqo
sq L(, 2 2 o b " 2
I IC ) (46" - kgo") b o
L
tanh “kqo(dqo + 3kqo ) d, tanh nd,
4" L + i L when s =g
hkqo3(do - Xqo ) o - kg0
. (1 + W (262 + 452) |[-do tanh ndy kg, tenh mkg
= 11 + + +
54 4(1 - 4
( H) (do - kqoh) (doh - ksoh) (kqoh - ksou)
dot - kgolt) kg tanh nik
( ° 90 ) S0 when s % q

(4% - ko) (kso* - Kgo¥)

Equation (53) represents a system of homogeneous linear algebraic
equations in the constants Cg. By setting the rth-order determinant

equal to zero, successive solutions for the critical load for
=1, 3, . . . may be obtained.
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NUMERICAL EVALUATION OF RESULTS OBTAINED
BY GAIERKIN'S METHOD
As a first approximation, equation (53) with q = s = 1 and with

appropriate numerical values of the mode shape constants obtained from
appendix D may be given as

2 2 P
Py A7y o e o + 01201920808 )", ” + io )|
o' - a0’ (26" - X;0")
0-T3963THT 1 _ 0.1183012(kn)2 {2. 44539946 (8% + 110°) (o” - :10%) -
(aoh - klou) (d02 - klo2)

0.4642857A (2.2 + 4.2 ak Kyl
+ 57 (802 + 4o2) 5.723650% - 0.575730 (2" + 310*)

1
Q104 - klou) (doll - k101‘)

do tanh ndg
I b
(do L3N

;} - (1.03031%2678,2 - 1.06186907) +

3,306090015(kn)2(aoLL - klou) [%.138780&
+

A A (kn)2

(kn)2 + 2.30&65%] +
172

1.2L46L4478
Al + == =0 y
2L (kn)2 ] } (54)
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where
p, = A (aoh - k1Ou) N
bd, tenh ndg - (1/b) (kn)2 tanh nb, |(agk - ki¥)
d (a2 + d.2) tanh nd
0.21970224(kn)? O(O A O) " °
(do - klO )
2.153846 (b, tanh mb, - d, tanh nd,)
M
and
' 22 = (/0] - W(1/2) 0% 4 3]

0,2 = 2&02/(1 - )

a2 = [(kn)2 + xl]/u

ki = kl/n = 0.752809375

Calculations using the sbove egquation were made for the parameters
r =39, R=0.3, and n =1 and for various values of the aspect
ratio Ly[Ly; the results are shown as the uppermost curve in figure 6.

This solution gives the minimum velue of the buckling stress factor C
as 1.430. For a second approximation, two equations of the type of
equation (52) were used with q teken as 1 and 3 and s as 1 and 3.
The results of the calculations were plotted in the curve labeled "upper
bound." The minimum value of C for this case was found to be 1,405,
It is noted that both these values are higher than the first and second
approximations obtained by the Leggett method which were also plotted
in figure 6 for comparison purposes. The values obtained by the leggett
- method approach the true values from below while values obtained from
the Galerkin method approach them from above,
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The percentage difference between the minimums of the two first
approximations (when referred to the lower value) is 11 percent, and
that between the two second approximations is 7 percent., For practical
calculations the arithmetic mean of the two second approximations can
be taken as the true value of the critical stress factor. In the case
just discussed the mean is 1.352 and the error is less than 3.5 percent
when this mean is used.

Table I shows a few sample values of lower and upper bounds and
also their arithmetic means which will be called the true values of
the minimum critical stress factor Cmin‘ All the values calculated

are presented in figure 5., Figure T is the plot of the true values
which are recommended for use in practical calculations.

NUMERICAL EXAMPIES

- As a first example, the buckling load of an aluminum cellular
cellulose-acetate sandwich panel is calculated with the aid of figure 7.
The panel was tested and reported as panel (1-1) in table 11 of refer-
ence 4. In the notation of the present report, the data of the panel are:

t = 0,013 inch c = 0,247 inch
L, = 39.82 inches E = 9.9 x 100 psi
p = 0.3 G, = 3500 psi

The following parameters are calculated:
r=c/t =19
F=1+3(1+r)° =1201
Oer,o0 = TEL /E(l - 12)1,2] = 3.81 psi

R = G [(Fop,) = 0-76k
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From figure 7, the value Cps, 1s approximately 1.32. Hence according
to equation (30) the buckling stress is:

(0. min = CminFoer,o = 1.32(1201)3.81 = 6040 psi
and thé buckling load is

Ypip = 2(0.013)604%0 = 157.0 pounds per inch

The test results (with Ly = 33.00 in.) of the Forest Products Laboratory
give buckling loads ranging from 146 to 176 pounds per inch.

As a second example a panel with a balsa core (panel 1-1, table 10,
refevence 4) is considered. The data are:

t = 0.012 inch ¢ = 0.255 inch
L, = 39.95 inches E = 9.9 x 106 psi
b =0.3 G. = 19,000 psi

The following parameters are calculated:

r = 21.25

F = 1486

Ocr,0 = 3.23 psi

R = 3.96

From figure T, the value of C, ;.  is approximately 1.56. Hence the
buckling stress is

(Gcr)min = 7486 psi
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and the buckling load is

Ymin = 179.7 pounds per inch

The test results (with Ly = 33.02 in.) as obtained by the Forest

Products Laboratory range from 164 to 176 pounds per inch. Hence the
agreement between the theoretical results of the present investigation
and the results of experimental tests carried out at the Forest Products
Laboratory is satisfactory.

CONCLUDING REMARKS

The differential equations developed in TN 2225 have been solved
for the buckling load of rectangular sandwich panels subjected to edge-
wise compression. Two solutions were obtained, one by the Leggett and
the other by the Galerkin method. The former gave a lower and the
latter an upper bound for the critical stress. In this manner the true
buckling stress could be estimated fairly accurately as the arithmetic
mean of the two bounds. The mean values were plotted for the entire
practical range of the geometric and physical constants involved.

A comparison of results given in TN 2225 with results given in this
report indicates that the difference in buckling stress in the region where
the sandwich stiffness parameter is less than 0.025 and the ratio of core
thickness to face thickness is less than 30 is negligible, These values
characterize plates with a very weak core. For values of either the sand-
wich stiffness parameter or the ratio of core thickness to face thickness
approaching infinity, the value of the minimum critical stress factor
approaches unity in the simply supported case and 1.745 in the present
problem. These values agree with those derived for ordinary isotropic
thin plates.

Several numerical examples calculated from the theory were found to
be in good agreement with results of tests carried out at the Forest
Products Laboratory.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., April 20, 1950
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APPENDIX A
BOUNDARY CONDITIONS

In order to ascertain whether successive solutions obtained by
Ieggett's method approach the buckling stress from above or below, the
boundary conditions must be examined in some detail.

It may be recalled that F (&), Gy (%), and Hp(E) as given by

equations (23a), (23b), and (15e) satisfy all boundary conditions stated
in equations (9), (10), and (11). When these functions are expanded into
sine series, the boundary conditions of equations (9) and (10) and the
first two of equation (11) are automatically satisfied, but whether the
remaining two boundary conditions

H'(¢) =0 at & =0,1 (A1)

are satisfied is not obvious. After expanding into sine series, the
first q terms of Hn(E) may be expressed as:

q
H (&) = i Ap sin mpt + ; E&/(mn)ﬂ {(-l)m?;A - EL - (—l)ﬂB} sin mnt

m=1

and

H,'(¢&) = i myh, COS mmg + . E;/(mﬂﬁ:l.{(_1)1113A -

m=1 m=

I:l - (—l)ﬂB} cos mnt

Hence from conditions (Al), when ¢ = O,1:

i - i; [4/(mn)?] {(-1)‘“3A - (_1)ﬂ3} -0

m=1
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and

(-1)mrdy + i Et/(mn)zil {3A +1- (—1)ﬂB}
m=1

=0
m=
Addition and subtraction of the above equations yield:
;i mehy (1 + (-1)F] }E_L [4/(u)?] |2 + (-1)%]38 = o

m=1

i w1+ (-1)F] + il [/ (mr)?] {3AE-1>’“ ] -2t - <-1>“EIB}

Insertion of the values of A

and B from equations (16a) and (16b)
gives after simplification:

If both E%j kA, and Ef: 2k + 1 A2k+l vanish simultaneously,
k=1 k=0

the coefficients A, B, and C in equations (16a) to (16c) vanish and
thus the boundary conditions are not satisfied. If one of the two sums
does not vanish, the left-hand member of one of equations (A2) and (A3)
must vanish. However, page 181 of reference 5 shows that:

q
Z k.AEk [2/6 (1/02)| = 0 (a2)
k=1 =
q
ﬁ: (2k + 1)Anp,q li/ep + 1]} =0 (A3)
= p:l

2]

x2/6 =5 (1/p2) (4)

p=1
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o0

28 =) [iep + 1)]? | (a5)

p=1

Consequently equations (A2) and (A3) are satisfied only if an infinite
number of terms in the series expansion H_""(&) are taken into account.

Hence the boundary conditions (Al) are not satisfied by approximate
solutions which use a finite number of harmonics. It follows that the
boundary conditions are relaxed and the critical stresses approach the
true values from below (see reference 6).
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APPENDIX B

REDUCTION OF RESULTS OBTAINED BY IEGGETT METHOD TO

A THIN HOMOGENOUS PIATE

The sandwich plate is transformed into a homogeneous and isotropic
thin plate if ¢ — O. When this is the case, A; and A> as defined
in equations (24) vanish. Consequently equation (25) is simplified and
in the case of symmetric buckling it can be written in the form

Assh + (kn)zlzkn)e + 282 _ )ﬂl}s - ig (0.8105693)(A1 +
]

Az + A5 + . .i] =0 (B1)

where s =1, 3, 5, . . ..

Values of the coefficient A = 16C in the formula for the buckling
stress as obtained from equation (Bl) are plotted in figure 8. The fig-
ure also shows Timoshenko's solution taken from page 320 of reference T.
It is noted that the third approximation gives & minimum value of
A = 6.94 which is only about 0.6 percent lower than Timoshenko's value
of 6.98.

The system of equations corresponding to unsymmetrical buckling
gives a higher buckling load for a plate of aspect ratio greater than 1
than that obtained from equation (Bl). However, the equations for
unsymmetrical buckling can be used conveniently to calculate the buckling
stress of a thin plate clamped at one unloaded edge and simply supported
at the other unloaded edge. With the notation

A = gcr/[%aEtE/le(l - u)(1x/2)2] = boer [oer,o (B2)

and

k' = Lx/2Ly = k/2
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The equation determining the buckling stress can be written as

i ' 2 2 t 2 ' 6

A4+A6+...)]=O (B3)

where s =2, 4, 6, . . ..

Values of the coefficient A' = 4C in the formula for the buckling
stress as obtained from equation (B3) are plotted in figure 9. The
minimum value of A' 1is approximately 5.32.




I¥s) NACA TN 2556
APPENDIX C
THE GAIERKIN METHOD

As the differential equations (1) to (3) were derived in reference 1
from the expression for the total potential by the variational process,
they express the requirements of equilibrium that the forces corresponding
to the u, Vv, and w displacements must vanish. The dimension of each
term in the equations is force per area since the variation of the total
potential was divided by the variation of the displacement and by an area.

If the first of the three equations, the one obtained by varying
the u displacements, is represented symbolically as

Q(u) + R(v) + s(w) =0 (c1)

and an approximate solution is assumed in the form

I r

u = Z 7 aijfli(x)glj(Y) (c2a)

i=0 j=o

<
L]

S S
Z Z bs 5T (x)Ep;(v) (c2b)

i=o0 j=o

£t
W o= Z Z cijf3i(X)g3j(y) (cac)
i=0 j=o

substitution of these sums in the differential equation does not, as s
rule, result in a vanishing left-hand member. If the value of the left-
hand member after the substitution is denoted e(x,y) to designate the
error, one may write

Q(Z > aijfliglj> + R(Z > bijf21g2j) + S(Z S Cijf3ig3j) = e(x,y)

(c3)
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The error e(x,y), which is a function of the coordinates x
and y, represents the amount by which the component corresponding to
u of the resultant of all the external and internal forces differs
from zero at any point x,y of the plate. If e(x,y) were identi-
cally zero, as required by the condition of equilibrium, the work done
by it would vanish for any arbitrary displacement. The equilibrium
condition can be approximated if the coefficients ai3, byjj, and cjj
of the series are determined from the requirement that the work done
by e(X,Y) mist vanish for a number of virtual displacements. As
equation (Cl) expresses the condition of equilibrium of the forces

corresponding to the u displacements, any of the displacement types
represented by

Uy = f11€13 (ck)

can be chosen as a virtual displacement provided uj j does not violate

the geometric constraints, The virtual work during this displacement
is, therefore,

W = fffliglj E(Z > aijfliglj> * R<Zzbi‘jf21gej) !
S(Z > Cijf3ig33)] > >

and one condition of equilibrium is

W=0 (c6)

in agreement with the principle of virtual displacements.

In the Galerkin process as described in references 8 and 9, the
functions f and g are chosen in such a manner that each product
figj satisfies all the boundary conditions although, as a rule, none

of them satisfies the differential equations. Hence Y3 3 in equa-

tion (C4) is a suitable virtual displacement. The requirement that the
virtual work vanish for the r2 displacement patterns contained in
equation (C2a) furnishes, therefore re conditions for the determina-
tion of the unknown coefficients. If it is further stipulated that the
components of the forces corresponding to the v and w displacements
do zero work during the s? and t2 virtual displacements contained
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in equations (C2b) and (C2c), respectively, a total of r2 + s2 + t2
conditions are available for the determination of the r2 + s2 + t2
unknown coefficients in equations (c2). These conditions form a set of

linear equations in the coefficients since equations (1) to (3) are
linear,

When r, s, and t are increased beyond all limits and the set of
equations figj are complete, the virtual work vanishes for any arbitrary

displacement and thus the differential equations are satisfied rigorously.
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APPENDIX D
ORTHOGONAL FUNCTIONS USED IN GAILERKIN'S METHOD

In the application of the Rayleigh-Ritz or Galerkin method to the
solution of buckling problems it is desirable to represent the deflected
shape by a linear set of admissible functions, which should preferably
form a complete system of orthogonal functions. In the present problem
the functions H,(&) can be chosen to be the normal modes of vibra-

tion of a uniform beam clamped at both ends. Such functions were used
successfully in references 10 and 11,

For simplicity consider the beam to be of length 2 and clamped at
€ = -1 and 1. These functions in the normalized form can be written
for an odd number of waves as

Pp(E) = cp cos kE - d cosh kb (Dp1)

where

cosh kp
m )1/2

/ o) 2,
\cos‘km + cosh—xm

cos kp
(cosekm + cosh2km

)1/2

and kp, as determined from the equation

tan ky + tanh k = O (D2)
has the values
k] = 2,3650204
k3 = 5.4978
= 8,6394

kg
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For an even number of waves, the normalized functions are

Py = 8y sinh k & - h sin k¢ (D3)

The meaning of the symbols is

sin kp
gn =
. 2
(sinekn + 51nh2kn)l/
sinh k
by, = e

(s1n2k, + sinnc M2

and kp, as determined from the equation

tan k, - tanh k =0 (Dk)
has the values
ky = 3.9266
k) = 7.0686
kg = 10,2102

It can be easily verified that

1
| wale)an(®) at = oy, (05)
-1
where
Sm =1 when m=n

8mn = O when m % n
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moreover

1

Jf @2m+l"(§)@2n+2(§) ¢ =0 m,n=0,1,2, ... (D6)
-1
1

Jf q)2n+2(§)cP2m.+1(E’) a =0 mn=0,1,2, ... (D7)
-1
1 1

f (8" (8) at = 7 =f Pp(E)e,"(8) a& =7 (D8)
-1 1

95" (1) = (kg tanh kg)pg"(1) (D9)

In the numerical calculations the following constants were needed:

tanh k; = 0.98250295 tanh k3 = 0.999966L5
p,"(1) = 7.8L407388 ¢3"(1) = -42.7&&8996
71y = -3-0754792 713 = -2, 43256274

= -2k, 7262334

733
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APPENDIX E
SUMMATION OF SERIES BY COMPIEX INTEGRATION

The series appearing in the solution by Galerkin's method can be
reduced to the following two types:

00 00

1 1

m= IIl2 - 8.2 m:l m2 - a2 2

where a may be real (nonintegral) or pure imaginary. The sums of
these series can be found with the aid of complex integration.

In the evaluation of the first series let f(z) = l/(z2 - 32). The
two poles of this function are 2z = ta wilth residues of value :(1/2&).
Hence, according to pages 133 to 135 of reference 12:

00
1 _ 1{fx s
Z —2———2- = - 2(; cot na 2> (El)
similarly,

1 1l/x 1l
N = E(— coth na - —§) (E2)

2 a a

m=]1 M 2

a

In the evaluation of the second series let f(z) = 1/(z2 - 32)2
which has two double poles at 2z = ta., Now consider the function

5w cot nzf(z). The residues at 2z = ta are
2
d |(z £ a)7n cot nz _ d [x cot nZ
2 Tzl L 2

- ﬂ2 1 2n cot na
B Y- 3
ha” sin“na 8a
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Hence

i 1 e 1 , 1 ot 1 (x3)
T (m2 - a2)2 hae(;ingna na ) 2ak

and similarly

i (m2 + a2)2 ) La? 2 na

2 2 1 1 ' 1
E 1 =X + = coth na) - —— (EY)
sinh“na 2al+

The sum of the following series can be found by first reducihg the
fraction to partial fractions:

o] 00

me

= —— —
m=1 (m? + aoe)(m2 - toz)(m2 - n02) m=1 m° + a02 m=1 me - t02

where

It can be shown that:

cy = - a02
(a2 + t 2) (8,2 + n,2)
co = tOE
(%2 + tog)(to.2 - noe)
. L2
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Hence with cot ﬂto = cot My = 0

00

Z m na, coth na,
= (E5)
m=1 (m2 + aoe)(m2 - tog)(m? - noe) 2(&02 + toz)(ao2 + nog)

when t, % ng.

When t, = n, the above partial fraction expansion has to be
modified in the following manner:

m=]1

o] 0 0
N S Y
(m2 + aoz)(mz - t02)2 =1 m2 + a2 (m? toe) ml - t,°

where
a 2
_ 0
R 2)2
(ao + to )
2
Ch = to
2" 2 2
a, + to
2
8s

°3 2. . 2)2
(ao + to )

Because of equations (El), (E2), and (E3) the result is

® e _ mag coth may 7 (56)
;;;j(mg + aoz)(m2 - to2)2 B 2(&02 + t02)2 * ll-(ao2 + toe) E
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In a similar manner:

a
o coth na,

(a02 + toe)(aoh - ksou)

V] B

;i;:(mE + a02)(m2 - toe)(mh - ksoh)

1 l— cot nkgq coth nkgq
+

Kso (ao2 + ksoe)(kso2 - toe) (302 - ksou)(kso2 + toe)

R

1 {;5 coth na coth “kso (a

(ET)
(aou - ksou)ljﬁoz + toz) kso .tou - ksoh)

In the above expression and in expressions where ks, appears, the
relation previously obtained in appendix D, that is,

tan nkgy + tanh skgy = O (D2)

is used to simplify fhe summations as follows:

NV E

:g:: m? -a, coth nag
= +
(m2 + 302)(mu - ktou)(mh - ksou) (aoh - k‘toh)(aoLL - ksoh)

o coth nky ’ coth nkg,

. - when s £ t (EB)
(ksoh - ?tou> kto(aoh - ktoh) kso(aoLL - ksoh)

a, coth na

=£_ o + T[ -
: (aOh - ktoh) uktoh(aoe - ktoz)
302 coth nkto(aoh - 5ktoh) P14 cosecenkto

- when s = t (E9)
hkto5(ao1+ - ktou)z hktoe(aou - ktoh)
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The following two series can be summed up in a similar manner:

b coth nb

) e =_£l— a coth na . .\
>—— (m +a )(m +b2) m +c 2L ) (b2 _'az)(bg_ c2)

¢ coth =wc (ElO)

(02 - az)(c2 - bz)

]

i m? _ 1 a coth na ) b coth =nb .
(12 +02)(n2+ 02) (2 ~kgo) 2 | (62 -12) |(a* - xso™) (b% - xg0")

m=]

(E11)

coth nkso(aabe + ksoh )
)

Kso (ah - ksoh) (b4 - kso)+

In order to find the sum of the series

4+ 2
) to

t=1 (to2 + 852) (t02 + b02) (to2 + d02)

where t, = (2t - 1)/2, let T =2t - 1, so that

t,2 : e
° = 16 z
Z; (t02+ a, )(t02+b02)(t02+d02) t=1,3,5,... [E2+ (2&0)2][}2+ (Zbo)ejﬁ‘e"' (2&0)2:'
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Now consider:

m2 = me

m=1,3,5,... (m2+a2)(m2+b2)(m2+ 02) i m= (m2+ a2)(m2+b2)(1112+c2) i

(2111)2 EEDI)2+ c]-l
Z 1 [(2m)2 + 82] [(2m)2+ 2]

[>+]

me

2
= )

Z (2 +82)(m? +b2)(m +c2) 1 m=1 m2+(a/2)§|£2+(b/z)?]ge"(c/g)e]

b

a 1 - A
[(ae -be)(az : c2) (coth na - 5 coth -E) + (bg.. a2 )(b2- Ce)(coth b -

oA

1 b c

1 nc
5 coth ?> (c2 i 82)((:2 i b2) (coth ne -~ > coth —é—)J

nra tanh (na/2) b tanh (nb/2) ¢ tanh (nc/2)
= + +
hL(ae 2) (a2 - ) (v2- a2)(v2 - 2) (c2- az)(cz )
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Hence
00
Ezj t02 _ a, tanh wag N
t=T (to2 * a02)(to2 + b02)(to2 + daéj 2 (a02 - boe)(aoz - doz)
bo tanh :rtbo d, tanh m'lo

+ (E12)
(b02 - a02)(bo2 - dog) (d02 - a02)(do2 - boe)

observing that

02 _1p 2. (1 +p) 8 2 L2 _(1+wM
e taa Pt T T
(1 )
do2 - aoe = '——%—E— (kn)®

and inserting these values into equation (E12) one obtains

}ﬂi t02 . Ure(1 - p) lEanh na, .

=1 (to2 + aoe)(to2 + boe)(-to2 + dog) (1 + w)2(kn)2 8

O

(kn)? tanh nb, 44, tanh nd,
b ) A (E13)
o™l 1
Similarly:
: "r 1 a, tanh nag
(t2+a2)(t2+d2)( - kg “) EL - a2 \ak -kt
d. tanh nd k a2 + d.2) tanh nk
0 0 so( 0 0 ) 50 (E1L)

+
(dol+ - ksoh) (aou - ksol‘L) (dou - kso)‘t)
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which can be written as

i 162 i d, tenh nd,
t=1 (£ + 857) (to° + dog)(toh - ksoh) (1 + p)(kn)2 dou - ksoh

a, tanh na, . (1 + p)(kn)? (a02 + doe)kso tanh ﬂks%] (£15)
@oh - ksoh) 8 ("5‘01’L - ksoh)(dou - ksoh)

5.: £t x 1 i b3 tanh xb, .
t=1 (tog + b02)(t02 + d02)(toh 'yksoh) 2 (b02 - doe) boh - kSOu

d,> tanh ndo) _ kg, tanh kg (002402 + kso“)] (516)
(doh - kSOu) (boh - ksoh)(do)+ - ksoh)

" The following sums can be evaluated in a similar manner:
N,

(i 2. S 2). & N (, & N
=1 (to + dg )(to - kgo )(to - Ko )

A

_ d, tanh nd, _
= (doh - ksoh)(doh - ktoh)

kso tanh “kso kto tanh “kto o
T, 4)( T h) B T h)( T h;] when s # t (EL7)
( o] so N\Ego Kio o) ko IEgo 80

4 i
_ 3‘5 do tanh ndo T .\ tanh “kto(do + 3kto ) i
2

+
(@ - keo™)® b M@ - ko?)  Mo3(at - ko) ®

2
T sec ﬂkto
) when s =t (E18)

uktoz(ﬁoh - kto4
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o to o f a3 tanh xdg
= +
2;; (t02 + d02)(tol+ - ksoh)(tol+ 2l£d - ksou) - Ko )
ko tanh nkg, . ki, tanh kg hen s # £ (819)
(dol+ - ksou)(kso4 - ktou) (dolL - ktoh)(ktoh - ksohz
T L
_x do3 tanh nd, 7T tanh Ttkto(do + 3ktoh)do2
2 (doh - ktou)g LLkt02(.do2 - ktog) ukto3(dou - ktou)2
ndoesecgnkto
when s =t (E20)
lLktog(dol+ - ktoh)
It may be added here that in deriving equation (c22) from equa-
tion (C21), the following relations were needed:
2ao’+ - (1 - p.)k_toﬂ + (1 + p)aoebog = (1 - p) (bol* - k.tol") (E21)
anlL - (1 - “)kto?] + (1 + “)aogdo (1-w ( - ko )
Kl + p.))\.l/){] (a02 + do2) : (E22)
[2%1* S (1 - p)kto“] (bo2 +dg2) + (1 + wag? (by2dy2 + K t) =
(1 - ) (262 + 82) (b0 - Kpo*) (E23)

[%aoh - (1 - “)ktog] + (1 + “)aogktoz = (1 - “)(aoe + ktoa)(bo2 - ktog)

(E24)
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e e S S S-S
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EDGES X=0, X= Ly ARE FIXED
EDGES y=0, Y= Lq ARE SIMPLY SUPPORTED

Figure 1.- Sandwich plate.

(Thicknesses are exaggerated.)
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Figure 2.- Displacements in plane of plate.

SECTION A -A

Figure 3.- Displacements out of plane of plate. (Thicknesses are
exaggerated.)
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1.8 /
FIRST APPROXIMATION - - ’
|7 SECOND APPROXIMATION - : /
,/
/
. /
r=39; R=0.3; h=| /
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- A
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| 5 \ 4 ,/// //
N ARy
C \\ \\ - // //
\\ P— __/ / y
I.4 J——"]
LOWER BOUND 4
< \',4
N <L R
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L/ Ly
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Figure 6.- Upper and lower bounds of critical stress factor for

r =39 and R = 0.3.
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Figure 8.- Critical stress factor for a thin plate loaded as shown.
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Figure 9.- Critical stress factor for a thin plate loaded as shown.
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